Pipeline Integrity Management and Data Science Blog

Alignment Process: Elevate the Accuracy and Reliability of your current efforts

Alignment Business Problem: When evaluating the integrity of a pipeline using inline inspection data, one of the primary challenges the integrity engineer faces is reliably and accurately aligning data from consecutive inspections with other asset information. Without this alignment, both longitudinally along the length of the pipeline and by clock position, it is extremely difficult to make comprehensive comparisons of identified features between multiple Inline Inspections. To correctly handle this comparison, the process used must first align anomalies and do so with a high quantifiable level of statistical confidence.

Add Significant Value to Your Risk Analysis with Cognitive Integrity Management™

Two of the most significant challenges in performing quantitative pipeline risk analyses include the lack of complete and reliable datasets and not having the ability to properly align and integrate this data into the pipeline risk assessment. In this post, we will discuss the role of Cognitive Integrity Management in transforming quantitative risk analysis to address these challenges when looking at ILI anomalies and repairs. Current Problem with Risk Analysis Processes: A significant limitation seen in many risk assessments is the incomplete use of ILI data.

Polaris – Closing the loop with a modern SaaS solution for Integrity Management

Following our procurement of Phillip’s 66 on-premise solution, we’ve been busy migrating it to the Microsoft Cloud in preparation for our Private Preview program. Through our Private Preview program, we plan to launch a minimally viable product (MVP) into the market worldwide in Q4 of this calendar year. Typically, we would be conducting several whiteboard sessions with customer journeys; however, through demos we have done with prospective customers thus far, we are certain that the solution already has the appropriate business processes in place.

How machine learning contributes to smarter pipeline maintenance

Machine learning can allow oil and gas companies to make better use of the enormous amounts of data as they try to maintain their pipelines. Last January, a major oil and gas company ran routine inspections of its thousands of miles of pipeline, using the same basic robotic device—the pig—that the industry has used for decades. However, this time, instead of sending data from the pig to a roomful of analysts and waiting months for results, the company applied a solution based on machine learning and data visualization.

Crack Fatigue Analysis as a Cloud Service

The more time we spend with our clients the more we learn they are reliant on spreadsheets. To this point, we’ve jokingly considered changing our mission from “Predict pipeline failures, save lives and protect the environment… with the assistance of Machine Learning” to “We eliminate legacy Microsoft Excel spreadsheets”. Of course, all joking aside, we want to enable integrity management teams to spend their time doing high-value engineering. The latest Microsoft Excel sheet we have replaced is a customer’s version of a Crack Fatigue Analysis based on the modified Ln-Sec equation for cracks in pressurized pipelines.